Pesquisar Neste Blog

terça-feira, 30 de novembro de 2010

Presidente do Conselho Executivo da OMS faz conferência na Fiocruz nesta quarta-feira (1º/12)

O presidente do Conselho Executivo da Organização Mundial da Saúde (OMS), Mihaly Kökény, fará uma conferência na Fiocruz nesta quarta-feira (1º/12), às 10h30, no Salão Internacional da Ensp. A palestra, promovida pelo Centro de Relações Internacionais em Saúde (Cris), terá como tema os desafios e perspectivas de uma nova arquitetura global para a saúde e o papel da OMS. O evento terá tradução simultânea.

Kökény é especialista em medicina interna e cardiologia, pós-graduado pela Faculdade de Medicina Geral da Universidade Semmelweis, em Budapeste. Foi ministro da Previdência Social da Hungria, de 1996 a 1998, e ministro da Saúde, Assuntos Sociais e Família, entre 2003 e 2004, quando foi responsável pela organização de programas profissionais e pelo desenvolvimento da primeira estratégia de promoção da saúde do país.

EMERGING INFECTIOUS DISEAES - DECEMBER 2010

Médicos reconstituem traqueia com pele e costelas do paciente


Cirurgiões franceses fizeram reconstruções em pessoas com câncer. Técnica consiste no uso de tecidos do próprio transplantado.
Uma equipe de cirurgiões franceses afirma ter conseguido pela primeira vez reconstruir a traqueia de vários pacientes com câncer, usando um pedaço da pele e tecidos dos próprios doentes.
"É a primeira substituição traqueal confiável do mundo", afirmou o professor Philippe Dartevelle, chefe do departamento de cirugia toráxica e vascular do Centro Marie Lannelongue, próximo a Paris, autor da inovação junto ao cirurgião plástico Frederic Kolb.
O transplante de traqueia praticado por Dartevelle e Kolb, chefe do serviço de cirugia plástica e de reconstrução do Instituto Gustave Roissy, consiste em substituir a traqueia destruída ou obstruída por um novo tubo, idêntico, construído com o próprio tecido do paciente, o que evita a possibilidade de rejeição.
O enxerto é fabricado com um pedaço de pele de 9 cm por 12 cm, retirado do antebraço do paciente, incluindo vasos sanguíneos. Depois, o tecido é "armado" com pedaços de cartilagem, retirados das costelas do paciente e cortados em finas tiras.
Em seguida, o pedaço de pele é dobrado e suturado para formar um tubo, que substituirá a traqueia. Ele deve ser rígido o suficiente para resistir à pressão da respiração e flexível o bastante para acompanhar os movimentos do pescoço. A técnica é utilizada atualmente por cirurgiões plásticos para reconstruir pedaços de nariz.
A técnica, aperfeiçoada progressivamente desde 2004, foi utilizada em sete pacientes em seis anos. Cinco deles, que sofriam de câncer, estão bem e levam uma vida normal. Dois faleceram em decorrência de uma infecção pulmonar. Os cirurgiãos explicaram que estes dois "fracassos" ocorreram devido ao tamanho do enxerto realizado, que ia até os brônquios - longo demais para fazer a expectoração das secreções bronquiais sem os "cílios" que cobrem a traqueia normal.
Os tumores da traqueia, duto que vai da laringe aos brônquios, podem matar um paciente em pouco tempo por causarem asfixia. "Quando se usa uma nova técnica, é preciso garantir que funcione e possa ser reproduzida", explicou Dartevelle.
A traqueia reconstituída é "perfeitamente vascularizada", destacou o médico, e apresenta epitélio (camada superior da pele).em sua superfície interna, que está em contato com a pele.
Experimentos têm sido feitos em animais para trocar o epitélio cutâneo usado até agora por um epitélio respiratório, produto de um cultivo com células ciliadas da nasofaringe.
"Até o momento, não havia uma solução aceitável para contar com uma verdadeira substituição traqueal", indicou Dartevelle, referido-se às diferentes técnicas testadas nos últimos cinquenta anos como transplantes, próteses e fragmentos de aorta.

The Curious Case of the Backwardly Aging Mouse

Golden years. Mice without active telomerase (right)
look much older than those with the enzyme (left).

In a lab in Boston, a research team has used genetic engineering to accomplish something  curious, turning frail-looking mice into younger versions of themselves by stimulating the regeneration of certain tissues. The study helps explain why certain organs and tissues break down with age and, researchers say, offers hope that one day such age-related deterioration can be thwarted and even reversed.
As we age, many of our cells stop dividing. Our organs, no longer able to rejuvenate themselves, slowly fail. Scientists don't fully understand what triggers this, but many researchers suspect the gradual shrinking of telomeres, the protective DNA caps on the end of chromosomes. A little bit of telomere is lost each time a cell divides, and telomerase, the enzyme that maintains caps, isn't typically active in adult tissues. Another piece of evidence: People with longer telomeres tend to live longer, healthier lives, whereas those with shorter telomeres suffer more from age-related diseases, such as diabetes, Alzheimer's, and heart disease.
Several years ago, Ronald DePinho, molecular biologist and director of the Belfer Institute of the Dana-Farber Cancer Institute, and colleagues at Harvard Medical School in Boston genetically engineered mice to lack a working copy of the telomerase gene. The animals died at about 6 months—that's young for mice, which usually live until they are about 3 years old—and seemed to age prematurely. At an early age, their livers and spleens withered, their brains shrank, and they became infertile. By early adulthood, these mice exhibited many of the maladies seen in 80-year-old humans.
DePinho says he wondered what would happen to the aging process in these mice if they suddenly began making telomerase again. "Would [we] slow it, stabilize it, or would we reverse it?" He and his colleagues genetically engineered a new batch of mice with the same infirmity, but this time they added back a telomerase gene that became active only when the mice received a certain drug. The researchers kept the gene off during development and let these mice prematurely age, as the previous ones had. But then at 6 months, the team switched on the telomerase gene.
The burst of telomerase production spurred almost total recovery. The rodents became fertile, their livers and spleens increased in size, and new neurons appeared in their brains, the researchers reported online yesterday in Nature.
The ability to reverse age deterioration in the mutant mice indicates that the cells that divide to replenish tissues don't simply die when their telomere clock expires, says DePinho. They apparently persist in a dormant state from which they can be revived. "One could imagine applying this approach to humans," he says, focusing the therapy on specific tissue types such as the liver, where telomerase is thought to play an important role in regeneration after damage by hepatitis, parasitic infection, and alcoholism.
K. Lenhard Rudolph, who studies stem cell aging at the University of Ulm in Germany, says that the results are encouraging for people with diseases that cause accelerated aging, like progeria, because the mice in this study were rescued despite already suffering from the effects of chronic disease. "It is a proof of principle that telomeres are at work here."
Drug companies and researchers are seeking ways to restore, protect, or extend a person's telomeres, but the jury is still out on whether such interventions can slow the symptoms of aging, let alone reverse them. Telomere investigator Maria Blasco of the Spanish National Cancer Research Center in Madrid cautions that DePinho's experiment shouldn't raise people's expectations of antiaging therapies just yet. "This study uses genetically modified mice," she says. "What remains a very important question in the field is can you delay aging in a normal mouse?"
DePinho agrees with those concerns. He also warns that his approach has potential drawbacks, as increasing telomerase activity beyond its natural levels can cause cancer. Still, that may not be an insurmountable problem if telomerase levels can be carefully controlled. DePinho notes that the mice in his study, whose telomerase activity was returned to a natural level, didn't develop tumors.